# Minimum Standards for Higher Agricultural Education (MSHAE)

# Food Science & Technology



Education Division
Indian Council of Agricultural Research
PUSA, New Delhi 110 012

#### PREFACE

Education Division of the ICAR has taken a praiseworthy initiative to develop Minimum Standards of Higher Agricultural Education in 12 disciplines of agricultural education programmes operational in the country under the patronage of the ICAR. These standards, once in place, will help in the establishment of new college/programme to build up capability/capacity to award quality education in all spheres of agricultural sciences. Delineation of educational standards is prerequisite for uniformity in streaming educational norms, enforcing academic discipline and quality output of professionals. The standards are required to enable the identification of sub-standard institutions/programmes.

On behalf of the committee, I thank the ICAR for having reposed faith in us in assigning the important academic task of formulating Minimum Standards of Higher Agricultural Education in Food Science & Technology discipline in terms of infrastructure, laboratories/instructional facility, faculty, man-power and other support so as to firm up guidelines for establishing colleges in the field of Food Process Engineering & Technology in Agricultural University / ICAR institutes / Deemed University / MoFPI / AICTE / MHRD etc.

I express my sincere thanks to the members of the committee, namely Dr. T.V. Satyanarayana, Dean (AgrilEngg& Tech), ANGRAU, Hyderabad; Dr. V.S. Shinde, Dean (Agric), MKV, Parbhani; Dr. C.S. Chopra, Head, Department of Food Science & Tech, College of Agriculture, GBPUA&T, Pantnagar and Dr. K.L. Khurana, Principal Scientist, Education Division, ICAR, New Delhi for their immense contribution in finalization of the standard. Also thank to special invitees, namely, Dr. R.K. Jain, Principal, AD Patel Institute of Technology, Anand and Dr. R.F. Sutar, Head, PHE&T, College of Food Processing Tech & Bioenergy (CFPT&BE), AAU; Dr. S.S. Kapdi, Head, BE, CFPT&BE, AAU; Dr. R.V. Prasad, Head, FQA, CFPT&BE, AAU; Dr. H.G. Bhatt, Head, FBM, CFPT&BE, AAU; Dr. H. Pandey, Head, FPT, CFPT&BE, AAU; Dr. A.K. Sharma, Head, FE, CFPT&BE, AAU; Dr. S.H. Akbari, Asso. Prof., PHE&T, CFPT&BE, AAU; Dr. S. Dutta, Asso. Prof., FBM, CFPT&BE, AAU for their valuable expert suggestions and made the task of the committee in framing the Minimum Standards of Higher Agricultural Education in the field of Food Science & Technology discipline.

My special thanks are for university authorities for their encouragement and college faculties support for collecting and consolidating the desired information for making the meeting success.

I wish that from the contemplated temples of quality education in Food processing, qualified human resource is generated that will work on reducing produce losses, value addition, quality food processing, new product development, maintaining plant and processing & product's problems.

(D.C. Joshi) Chairman Expert Committee

#### INTRODUCTION

Advancement of any industry depends upon availability of skilled human resource. Food processing industry is no exception. The industry is in dire need of highly skilled and trained manpower across different levels to handle various operations. The human resource requirements for the food processing units in India vary according to the nature of the industry in which it operates. It is very essential to design and develop a mechanism addressing to the manpower development at different levels of responsibilities. Thus human resource development needs to cover the entire gamut, from basic infrastructure, education, vocational and technical guidance to professional qualifications.

There are plenty of job opportunities for food technologists in the country. They are in demand in the sectors such as grain mills, bakery units, confectionery industry, fruits & vegetables pack houses, canning factories, beverages industries, dehydration industries, frozen foods units, soft drinks factories, packaging industries, distilleries & wineries, dairy industry, equipment manufacturers, R & D centres, regulatory organizations, academic institutions, government departments & ministries, and others.

The academic programmes of graduation as well as post-graduation in different disciplines of Food Science & Technology are available at many universities and institutions. The institutions have been working under different systems such as UGC, MHRD, CSIR, ICAR, SAUs, MoFPI, etc. In India, there are more than 65 institutions offering under graduate (UG) and 34 institutions offering post-graduate (PG) program in the subjects of Food Science & Technology or directly related areas. Out of above, about one-third for UG and two-thirds for PG are in the traditional universities and in science and engineering colleges under UGC/AICTE. Another one-third institutions offering UG degree are under self-financed system, mainly by the engineering colleges. Only about 20 % institutions are under the SAU/ICAR system.

There is a huge gap between the supply and demand of the qualified personnel for the industry. The gap is big particularly for the graduates in the discipline as compared to the post-graduates. In the large processing units and the organised sector, a typical ratio of employment from education level point of view for post-graduate: graduate: diploma/certificate holder is 1:2:4.

For quality assurance in higher education, it is essential to develop norms and standards for the colleges and the academic programmes being offered by them. The ICAR has appointed different committees to deliberate and recommend the minimum standards required for starting and operating a college under different subjects. The committees are expected to deliberate on the minimum norms and standards for the colleges and give recommendations.

The committee on MSHAE in Food Science & Technology discipline are to work out the minimum standards of higher education in terms of infrastructure, laboratories, field facilities, faculty, man-power and other support so as to firm up the guidelines for establishing a college in the SAUs/DUs/CAUs.

# Proceedings of the ICAR Committee Meeting on Minimum Standards of Higher Agricultural Education for Food Science & Technology held at College of Food Processing Technology & Bioenergy, Anand, Gujarat on May 20<sup>th</sup> – 21<sup>th</sup>, 2014

The inaugural session of the meeting was chaired by Dr. K B Kathiria, Hon. Vice Chancellor, Anand Agricultural University, Anand.

The following committee members were present:

1. Dr. D.C. Joshi Chairman Dean, Faculty of Food Processing Tech & Bioenergy, AAU, Anand

2. Dr. K.L. Khurana Member Secretary P.S. (EQR) for ADG (EQR), ICAR, New Delhi

3. Dr. T.V. Satyanarayana Member Dean (AgrilEngg& Tech), ANGRAU, Hyderabad

4. Dr. V.S. Shinde Member Asso. Dean (Food Tech), UNMKV, Parbhani

5. Dr. C.S. Chopra
Head, Department of Food Science & Tech, College of Agriculture,
GBPUA&T, Pantnagar

Member

#### Special Invitees:

- 1. Dr. R.K. Jain, Principal, ADIT, Anand
- 2. Dr. R F Sutar, Head, PHE&T, College of Food Processing Tech & Bioenergy, AAU
- 3. Dr. S SKapdi, Head, BE, College of Food Processing Tech & Bioenergy, AAU
- 4. Dr. R V Prasad, Head, FQA, College of Food Processing Tech & Bioenergy, AAU
- 5. Dr. H G Bhatt, Head, FBM, College of Food Processing Tech & Bioenergy, AAU
- 6. Dr. H Pandey, Head, FPT, College of Food Processing Tech & Bioenergy, AAU
- 7. Dr. A K Sharma, Head, FE, College of Food Processing Tech & Bioenergy, AAU
- 8. Dr. S H Akbari, Asso. Prof., PHE&T, College of Food Processing Tech & Bioenergy, AAU
- 9. Dr. S Dutta, FBM, College of Food Processing Tech & Bioenergy, AAU

Dr. R.F. Sutar, Prof & Head, PHE&T, College of Food Processing Technology & Bioenergy, AAU welcomed and introduced the committee members, university officers and invitees.

Dr. K.L. Khurana elaborated the initiatives taken by ICAR by constituting twelve discipline wise expert committees to work on improving the standards of higher agricultural education in India. He also acknowledged AAU for providing full support in hosting this committee meeting at its campus.

Dr. D C Joshi, Chairman, MSHAE committee for Food Science & Technology briefed the forum about the present status of food industry, employment opportunities, functional distribution of food processing technology professionals currently working in Indian food industry and their education level. He also presented the current scenario of food processing technology education in the country. He stressed upon the demand of human resource with processing skills in the food industry.

Dr. R K Jain, Principal, ADIT, Anand shared his thoughts on the urgent requirement for setting up of minimum standards for higher education for food processing technology in line with the requirement of the industry.

Dr. K.B. Kathiria, Hon Vice Chancellor of AAU also welcomed the committee and acknowledged ICAR for providing opportunity to host this meeting at AAU, Anand. He expected that the two days deliberation will come up with a concrete recommendation, which will be helpful in improving the standards of higher agricultural education in general and food science and technology in particular.

Thereafter, Dr. D C Joshi, initiated the discussion on various agenda items on point by point basis. After detailed deliberations, the Minimum Standards of Higher Agricultural Education in terms of infrastructure, laboratories / field facilities, faculty, man power and other support so as to firm up the guidelines for establishing a college of food science and technology worked out by the committee are enclosed as Annexure – I.

Dr. C.S. Chopra
Member

**Dr. V.S. Shinde**Member

**Dr. T.V. Satyanarayana**Member

**Dr. K. L. Khurana**Member Secretary

**Dr. D. C. Joshi**Chairman

#### Annexure - I

#### 1. Names of the constituent departments of the college

The academic programme should be governed through a separate college having different departments and sections. Looking to the courses and subjects covered, the following can be the departments in the college;

- (i) Department of Food Technology
- (ii) Department of Food Engineering
- (iii) Department of Food Quality Assurance
- (iv) Department of Food Processing Plant Operations
- (v) Department of Food Business Management

In addition to above, the college can have a few more related departments / sections (optional) such asDepartment of Post Harvest Technology, Department of Basic Sciences, Humanities & Engineering, Department of Bio Energy, Food Testing & Analytical Laboratory (NABL accredited), Technology Transfer / Consultancy Cell, Training & Placement Cell and others.

#### 2. Degree nomenclature

Keeping in view the wide opportunities available worldwide, the names of the degrees recommended are;

UG program: B.Tech (Food Process Engineering & Technology)

PG program: M.Tech & Ph. D (Food Process Engineering & Technology) with specializations in Food Technology, Food Engineering, Food Quality Assurance and others depending upon the facilities and faculty available.

#### 3. System of education and program duration

Formal education with semester and credits system through English medium involving theory and practicals is recommended.

B Tech program: Minimum 8 semesters (4 academic years) after 10+2 or Minimum 6 semesters (3 academic years) after 10+3(Lateral entry for diploma holders).

M Tech program: Minimum 4 semesters (2 academic years)

Ph D program : Minimum 6 semesters (3 academic years)

The semester should be of minimum duration of 110 working days.

#### 4. Eligibility criteria for admissions

The present criteria for UG admissions having 10+2 higher secondary pass with PCM/PCMB subjects can remain unchanged. Lateral admission for diploma holders (10+3) in relevant fields may be considered in the second year. Similarly, for the admissions to the master's degree, the bachelor degree in the relevant faculty should be considered.

#### 5. Intake capacity

A normal intake of 40 students per yearshould be ideal for under graduate program. However, the Universities will be at liberty to enhance intake up to maximum 60 subject to the availability of human resources, equipment, facilities, etc.

The intake of the PG programmes should be commensurate with the availability of qualified faculty, laboratories and research facilities.

#### 6. Manpower requirements

- The college may be headed by a Dean/Assoc Dean/Principal.
- Each department be headed by a Head of Department normally professor but not below the rank of Associate Professor.
- In deciding manpower norms, the characteristic feature of SAUs has been taken into consideration. This relates to trinity of function (teaching, research and extension education) where every faculty member has to be involved in more than one function.
- Actual faculty needs of a college/department should be based on the academic programs and student strength.

The total minimum manpower requirement of a college is sub-divided into following three categories;

#### A. Administrative and support staff

| Office     | Position              | Number | Remarks                |
|------------|-----------------------|--------|------------------------|
|            | Administrative-cum-   | 1      |                        |
|            | Accounts Officer or   |        |                        |
|            | equivalent            |        |                        |
|            | Office Superintendent | 1      |                        |
|            | PA to Dean/Principal  | 1      |                        |
|            | Senior Clerk          | 4      | 1 Administration,      |
| Dean /     |                       |        | 1 Establishment,       |
| Principal  |                       |        | 1 Accounts& 1 Academic |
| Fillicipai | Junior Clerk          | 5      | 1 Administration,      |
|            |                       |        | 1 Establishment,       |
|            |                       |        | 1 Examination,         |
|            |                       |        | 1 Accounts& 1 T&P      |
|            | Store keeper          | 1      | _                      |
|            | Attendant             | 1      |                        |
|            | Messenger             | 2      |                        |

|                     | Driver                      | 2   | 1 for Light vehicle,<br>1for Heavy vehicle |
|---------------------|-----------------------------|-----|--------------------------------------------|
|                     | Hostel Warden               | 1   | nominated faculty member                   |
| Hostel              | Hostel Assistant<br>Warden  | 2   | Full time, 1 Male & 1 Female               |
|                     | Hostel attendant            | 4   | 2 Male &2 Female                           |
|                     | Hostel clerk                | 2   | 1 Male & 1 Female                          |
|                     | Physical Instructor         | 2   | 1 Male & 1 Female                          |
| Students<br>Welfare | Sports Assistant            | 3   | 1 Indoor; 1 Outdoor; 1 Gymnasium           |
| vveliale            | Training & Placemen Officer | t 1 | (nominated faculty member)                 |

Note: Medical/health facilities, security, housekeeping, maintenance and other services wherever possible could be outsourced or should be made available from the existing university setup.

#### B. Library

Library facilities will be needed to support, encourage, and stimulate independent study and research by both students and faculty. There should be a central library located centrally on the campus for the convenience of students, teachers and scientists. Colleges should have a separate library. The facility should have sufficient text & reference books, journals, magazines, internet access and e-library. Library must offer sufficient day-to-day management space for required stacking, printing and photocopying, reading, etc. The minimum staff for the college library should be;

| Designation         | Number |
|---------------------|--------|
| Assistant Librarian | 1      |
| Library Assistants  | 2      |
| Clerk               | 1      |
| Shelf Assistants    | 2      |

C. Department wise faculty & supporting staff

| Depart | Faculty           |                   |                        | Supporti                   | ng sta | ff        |                |                  |
|--------|-------------------|-------------------|------------------------|----------------------------|--------|-----------|----------------|------------------|
| ment   | Prof-cum-<br>Head | Asso<br>Professor | Assistant<br>Professor | Office<br>Assistant/<br>PA | Clerk  | Messenger | Lab Technician | Lab<br>Attendant |
| FT     | 1                 | 2+1*              | 5+1*                   | 1                          | 1      | 1         | 5              | 2                |
| FE     | 1                 | 2+1*              | 5+6*                   | 1                          | 1      | 1         | 3+3*+3**       | 3                |
| FQA    | 1                 | 2                 | 5+2*                   | 1                          | 1      | 1         | 3              | 2                |
| FPO    | 1                 | 2                 | 4                      | 1                          | 1      | 1         | 2+6***         | 6                |
| FBM    | 1                 | 2                 | 4+4*                   | 1                          | 1      | 1         | 2              | 2                |
| Total  | 5                 | 10+2*             | 23+13*                 | 5                          | 5      | 5         | 27             | 15               |

<sup>\*</sup> For associated subjects such as English, Mathematics/Statistics, Chemistry, Agriculture, Post Harvest Technology, Mech. Engg., Electrical Engg., Electronics & Instrumentation, CivilEngg, Bio Energy etc.

<sup>\*\*</sup> ITI trade man such as turner, fitter & welder.

\*\*\* Plant operators including boiler operator, refrigeration plant operator, mechanic, electrician, etc.

#### 7. Faculty Expertise

| Department                       | Faculty Expertise                                                                                                                  |                                                                                                                                                                                                                                                         |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                  | Core                                                                                                                               | Associated                                                                                                                                                                                                                                              |  |
| Food Technology                  | Food Technology                                                                                                                    | <ul><li>Dairy Technology</li><li>Livestock Products Technology</li><li>Post Harvest Technology</li></ul>                                                                                                                                                |  |
| Food Engineering                 | Food Engineering                                                                                                                   | <ul> <li>Mechanical Engineering</li> <li>Electrical Engineering</li> <li>Instrumentation &amp; Process Control Engineering</li> <li>Civil Engineering</li> <li>Electronics Engineering</li> <li>Bioenergy/Environment/industrial Engineering</li> </ul> |  |
| Food Quality<br>Assurance        | <ul> <li>Food Quality</li> <li>Assurance</li> <li>Food Chemistry</li> <li>Food Microbiology</li> <li>Food Biotechnology</li> </ul> | Biochemistry     Analytical Chemistry                                                                                                                                                                                                                   |  |
| Food Processing Plant Operations | <ul><li>Food Technology</li><li>Food Engineering</li></ul>                                                                         | <ul><li>Food Chemistry</li><li>Food Microbiology</li><li>Food Business Management</li></ul>                                                                                                                                                             |  |
| Food Business<br>Management      | <ul> <li>Food Business Management</li> <li>Project Management</li> <li>Operations Management</li> </ul>                            | <ul> <li>Computer Science &amp; Engineering</li> <li>English Language</li> <li>Mathematics/Statistics</li> <li>Agricultural Science</li> </ul>                                                                                                          |  |

- Minimum qualification for faculty recruitment be as notified by the ICAR from time to time. All the vacancies shall be filled by open competition and NET, whereever available, should be compulsory for recruitment at Assistant Professor and equivalent level.
- The condition of minimum two publications in NAAS rated journals may be replaced with two publications in reputed journal, because very few number of journals in this disciplines are having NAAS rating.

#### 8. Laboratories

The following can be the nomenclature of the teaching laboratories;

| Sr. | Name of Department    | Name of Laboratory                            |  |  |  |
|-----|-----------------------|-----------------------------------------------|--|--|--|
| 1   | Food Technology       | Food Processing Technology Lab                |  |  |  |
|     |                       | Food Product Development Lab                  |  |  |  |
|     |                       | Packaging Technology Lab                      |  |  |  |
|     |                       | Post Harvest Technology Lab                   |  |  |  |
|     |                       | Sensory Lab                                   |  |  |  |
| 2   | Food Engineering      | Thermal engineering Lab                       |  |  |  |
|     |                       | Fluid Mechanics Lab                           |  |  |  |
|     |                       | Electrical, electronics & process control lab |  |  |  |
|     |                       | Workshop                                      |  |  |  |
|     |                       | Food Process Engineering Lab                  |  |  |  |
|     |                       | Engineering Properties Lab                    |  |  |  |
|     |                       | Storage Engineering Lab                       |  |  |  |
|     |                       | Environment & Bio Energy Lab                  |  |  |  |
| 3   | Food Quality          | Food Chemistry Lab                            |  |  |  |
|     | Assurance             | Food Microbiology Lab                         |  |  |  |
|     |                       | Food Biotechnology Lab                        |  |  |  |
| 4   | Food Processing Plant |                                               |  |  |  |
|     | Operation             | Incubation center                             |  |  |  |
| 5   | Food Business         | Language Lab                                  |  |  |  |
|     | Management            | Computer Lab                                  |  |  |  |
|     |                       | Training and technology demonstration Lab     |  |  |  |

#### 9. Hands on training/instructional processing facility:

Area specific working pilot-plant facilities should be available to have hand on practice of principles of unit operations, product processing and unit processes involved in food processing technology. This facility will be essential for the experiential learning courses of the degree program besides for use as PG researchfacility. This should also serve as incubation center for the prospective entrepreneurs in the region for food processing.

# 10. National Accreditation Board for Laboratory (NABL) accredited food testing laboratory

The exposure of the students to the commercial sample testing in the industrial environment is essential. A separate food quality testing laboratory duly accredited by NABL should be the integral part of the college / university. The laboratory should be appropriately equipped with sophisticated instruments needed for food analysis as per the national food standards. The necessary infrastructure including floor space and equipment should be created. The lab should be manned as under

| Sr | Designation                    | Number |
|----|--------------------------------|--------|
| 1  | Professor (Quality management) | 1      |

| 2 | Associate Professor (Technical management)                   | 1 |
|---|--------------------------------------------------------------|---|
| 3 | Assistant Professor (Chemistry, Microbiology, Biotechnology) | 3 |
| 4 | Laboratory technician                                        | 5 |
| 5 | Laboratory attendant                                         | 2 |
| 6 | Store keeper / clerk                                         | 2 |

#### 11. Land requirement

Adequate land for constructing offices, departments, laboratories, pilot plants, hostels and other necessary infrastructure will be required. Minimum 5 ha land will be needed. Additional land will be needed for research projects etc.

#### 12. Floor space requirement

| Sr. | Description                | Number             | Dimension/Remarks          |
|-----|----------------------------|--------------------|----------------------------|
| 1   | Dean/Principal office      | 01                 | 20'x40'                    |
| 2   | Main administrative office | 01                 | 20'x40'                    |
| 3   | Head of department         | 07 (one for each   | 15'x 20' each              |
|     |                            | department)        |                            |
| 4   | Dept. Admin. Office        | 07                 | 15'x20'                    |
| 5   | Faculty room               | -                  | 10'x12' each faculty       |
| 6   | UG smart class room        | 04                 | Sitting capacity of 60     |
| 7   | PG smart class room        | As per requirement |                            |
| 8   | Examination hall           | 02                 | Sitting capacity of 120    |
| 9   | Food technology            |                    |                            |
|     | information center         |                    |                            |
| 10  | Laboratories               | 20                 | 30'x40' each               |
| 11  | Workshop                   | 01                 | 40x60'                     |
| 12  | Cold Storage               | 01                 | 20'x20'                    |
| 13  | Drawing hall               | 01                 | 40'x60'                    |
| 14  | Seminar room               | 01                 | Sitting capacity of 150    |
| 15  | Meeting room               | 01                 | Sitting capacity of 50     |
| 16  | Common room for            | 02                 | 15'x 20' each              |
|     | students                   |                    |                            |
| 17  | Auditorium                 | 01                 | Sitting capacity of 400    |
| 18  | Store room                 | 02+05(for dept)    | 15'x 20' each              |
| 19  | NCC/NSS office             | 01                 | 15'x 20' each              |
| 20  | Library                    | 01                 | -                          |
| 21  | ELP Building               | 01                 | As per the requirement of  |
|     |                            |                    | pilot plants               |
| 22  | NABL Food Testing Lab      | 01                 | As per the requirement     |
| 23  | Gymnasium, indoor          | 01                 | -                          |
|     | games                      |                    |                            |
| 24  | Canteen                    | 01                 | -                          |
| 25  | Toilets                    | 02 sets (one each  | At every wing/floor        |
|     |                            | for Ladies/ Gents) |                            |
| 26  | Parking space              | As per requirement | For college and hostels    |
| 27  | Hostel                     | 2                  | 1 for Boys (150 residents) |

|    |             |                    | 1 for Girls (150 residents) |
|----|-------------|--------------------|-----------------------------|
| 28 | DG set shed | As per requirement |                             |

#### 13. Funds

The degree program will preferably be administered by an independent administrative unit, a separate organized college with an identifiable budget that can adequately sustain a quality academic activity.

Sufficient stipend should also be paid to the students during in-plant training.

#### 14. Equipment/Instrument

The college should be equipped with modern instruments, equipment, machinery and other necessary items as listed in Annexure-II.

#### 15. General strategies for development of Human Resource in Food Processing

- a) To achieve the demand of the technical manpower for the Food Industry, it is imperative that the necessary support infrastructure for human resource development is in place and the competent and relevantly trained manpower is made available.
- b) As various statutory bodies (UGC, AICTE, CSIR, ICAR, IIT, NIT) and different ministries (MHRD, Agri& Coop, MoFPI, MST) are involved in imparting education in the areas directly related to Food Science & Technology, the committee is of the view that a common apex / nodal body be formed, for example, All India Council for Education & Research in Food Processing. ICAR should initiate necessary action in this regard.

Such an apex body can act as central monitoring agency for all institutions across the country and be given mandate of establishing and enforcing minimum standards of higher education so as to generate competent human resource for the important field having direct relevance to human health and food security. The apex body can also play important role in streamlining Research & Development in Food Processing. The body will also collaborate with agri-research institutions.

- c) The shortage of Production, Quality and R&D specialists is one of the major bottlenecks hampering the food processing industry, and therefore the government should immediately create a roadmap revising the curriculum and intake in relevant degree program involving concerned industry people. The issue may be taken up in the next Deans' Committee.
- d) Establishment of Centres of Excellence in Food Processing Technology with state of the art facilities, preferably in PPP mode, should be encouraged.
- e) To attract students towards food processingtechnology programmes, more fellowships / scholarships be created.
- f) The food processing technology colleges should also take up relevant vocational courses as per the regional demand of the industry.
- g) For appropriate In-plant training of the students, reputed industries be selected. A

list of such industries be prepared in consultation with the industry and approved by the competent authority.

#### Annexure-II

# **Department wise list of Minimum Equipment/ Instruments in Laboratories**

### **Department of Food Technology**

| Sr. | Name of Equipment              |
|-----|--------------------------------|
| 1   | Fruit/ vegetable Blancher      |
| 2   | Exhaust Box                    |
| 3   | Retort system                  |
| 4   | Kettle (steam jacketed)        |
| 5   | Steam generator                |
| 6   | Fruit/vegetable peelers        |
| 7   | Homogenizer                    |
| 8   | Mixers                         |
| 9   | Fruit cutting/ slicing machine |
| 10  | Spice mixing machine           |
| 11  | Dough Mixer                    |
| 12  | Dough divider                  |
| 13  | Table Sheeter                  |
| 14  | Dough moulds                   |
| 15  | Baking oven                    |
| 16  | Bread slicer                   |
| 17  | Pasta making machine           |
| 18  | Laboratory ovens               |
| 19  | Cooling chamber                |
| 20  | Pouch sealing machine          |
| 21  | Lab Roller dryer               |
| 22  | Lab Spray dryer                |
| 23  | Lab Tray dryer                 |
| 24  | Lab Fluidized bed dryer        |
| 25  | Lab Vacuum dryer               |
| 26  | Lab Cabinet dryer              |
| 27  | Lab freeze dryer               |
| 28  | Foam mat dryer                 |
| 29  | Grain dryer                    |
| 30  | Osmotic dryer                  |
| 31  | Weighing machines              |
| 32  | High precision digital balance |
| 33  | Munshellcolour chart           |
| 34  | Lovibondtintometer             |
| 35  | Hunter colour lab meter        |

| - 00 | D'accepte a soute a                 |
|------|-------------------------------------|
| 36   | Disc colour meter                   |
| 37   | Portable chromameter                |
| 38   | Viscometer                          |
| 39   | Shrink wrap packaging machine       |
| 40   | Form fill and sealing machine       |
| 41   | Vacuum packaging machine            |
| 42   | Heat sealing machine                |
| 43   | Fruit/ vegetable sorter             |
| 44   | Fruit/ vegetable Grader             |
| 45   | Verniercallipers of different sizes |
| 46   | Colour dictionary chart for grain   |
| 47   | Angle of repose unit                |
| 48   | Hardness tester                     |
| 49   | Soxhlet apparatus                   |
| 50   | Kjeldhal apparatus                  |
| 51   | Muffle furnace                      |
| 52   | pH meter                            |
| 53   | Refractometers for different ranges |
| 54   | Incubator                           |
| 55   | Germinator                          |
| 56   | Laboratory modern rice mill         |
| 57   | Laboratory modern dhal mill         |
| 58   | Flaking machine                     |
| 59   | Popcorn machine                     |
| 60   | Falling number apparatus            |
| 61   | Lab oil expeller                    |
| 62   | Amylograph                          |
| 63   | Extensiongraph                      |
| 64   | Farinograph                         |
| 65   | Sieve analysis set up               |
| 66   | Hammer mill                         |
| 67   | Modem wheat milling machine         |
| 68   | Extruder                            |
| 69   | Meat mincer                         |
| 70   | Dumber and slaughtering machine     |
| 71   | Defeathering machine                |
| 72   | Plate freezer                       |
| 73   | Meat cutter/ chopper                |
| 74   | Conching unit                       |
| 75   | Cocoa roaster                       |
| 76   | Cocoa tempering unit                |

| 77  | Chocolate moulder                                            |
|-----|--------------------------------------------------------------|
|     |                                                              |
| 78  | Rolling machine                                              |
| 79  | S.S. utensils (pan/ fry pan/Kadhai/ spoon plates/ knife etc) |
| 80  | Basket press                                                 |
| 81  | Screw type juice extractor                                   |
| 82  | Centrifugal Juice extractor                                  |
| 83  | Hydraulic press                                              |
| 84  | Fruit Pulper/ Crusher                                        |
| 85  | Juice dispensing machine                                     |
| 86  | Bottle filling machine                                       |
| 87  | Bottle washing machine                                       |
| 88  | Crown corking machine                                        |
| 89  | Texture analyzer                                             |
| 90  | Gas chromatography unit                                      |
| 91  | Respirometer                                                 |
| 92  | Sensory evaluation set                                       |
| 93  | Milkotester                                                  |
| 94  | Gerber butyrometer                                           |
| 95  | Cream separator                                              |
| 96  | Butter making machine                                        |
| 97  | Ice cream machine                                            |
| 98  | Khoa making machine                                          |
| 99  | Multiple effect evaporator                                   |
| 100 | Cryoscope                                                    |
| 101 | Melting point apparatus                                      |
| 102 | Double distillation unit                                     |
| 103 | Scavengerapparatus                                           |
| 104 | Polarimeter                                                  |
| 105 | Ultrafiltration system                                       |
| 106 | Water analysis unit (kit)                                    |
| 107 | Density meter                                                |
| 108 | TDS meter                                                    |
| 109 | Conductivity meter                                           |
| 110 | Nephlometric turbidity unit                                  |
| 111 | Water baths                                                  |
| 112 | Autoclave                                                    |
| 113 | Carbonation unit                                             |
| 114 | BOD incubators                                               |
| 115 | Bomb calorimeter                                             |
| 116 | Rotary Shaker                                                |
| 117 | Puncture resistance tester                                   |

| 118 | Bursting strength tester                 |
|-----|------------------------------------------|
| 119 | Tearing strength tester                  |
| 120 | Tensile testing machine                  |
| 121 | Box compression tester                   |
| 122 | Drop tester                              |
| 123 | Modified atmospheric storage             |
| 124 | Water vapour transmission measuring unit |
| 125 | Oxygen transmission measuring unit       |
| 126 | Super critical fluid extraction system   |
| 127 | Rotary vacuum evaporator                 |
| 128 | Lab Aseptic processing system            |
| 129 | Lab IQF system                           |
| 130 | Small Cold storage                       |
| 131 | Laboratory Fermenter                     |
| 132 | Microwave ovens                          |
| 133 | Moisture meters                          |

# **Department of Food Engineering**

| Sr. | Name of Equipment                                   |
|-----|-----------------------------------------------------|
| 1   | Flow over notches apparatus                         |
| 2   | Bernoulli's apparatus                               |
| 3   | Reynolds apparatus                                  |
| 4   | Flow measurement by venturi meter and orifice meter |
| 5   | Centrifugal pump (model )                           |
| 6   | Reciprocating pump(model)                           |
| 7   | Gear pump model                                     |
| 8   | Submersible pump                                    |
| 9   | Positive displacement pump                          |
| 10  | Fluid friction measurement devices                  |
| 11  | Minor head loss apparatus                           |
| 12  | Model of Lancashire boiler                          |
| 13  | Model of Packaged Boiler/ model                     |
| 14  | Model of Babcock and Wilcox boiler                  |
| 15  | Vertical water tube boiler                          |
| 16  | Solar water heater                                  |
| 17  | Steam jet condenser: parallel flow                  |
| 18  | Steam jet condenser: counter flow                   |
| 19  | Surface condenser                                   |
| 20  | Evaporative condenser                               |
| 21  | Shell and tube heat exchanger                       |

| 00 | Dieta Tima Haat Frieken nan                         |
|----|-----------------------------------------------------|
| 22 | Plate Type Heat Exchanger                           |
| 23 | Double pipe heat exchanger                          |
| 24 | Natural convection apparatus                        |
| 25 | Forced convection apparatus                         |
| 26 | Thermal conductivity apparatus for solid and liquid |
| 27 | Working model of belt conveyor                      |
| 28 | Working model of bucket conveyor                    |
| 29 | Working model of chain conveyor                     |
| 30 | Working model of screw conveyor                     |
| 31 | Universal testing machine                           |
| 32 | Ball fall viscometer                                |
| 33 | Capillary tube viscometer                           |
| 34 | Rotational viscometer                               |
| 35 | Model of multiple effect evaporator                 |
| 36 | Rotary vacuum flash evaporator                      |
| 37 | Cabinet drier                                       |
| 38 | Screw gauges                                        |
| 39 | Vernier calipers                                    |
| 40 | Micrometers                                         |
| 41 | B.O.D. incubators                                   |
| 42 | Desiccators                                         |
| 43 | Refrigerated centrifugal machine                    |
| 44 | Ultra filtration apparatus                          |
| 45 | Micro wave oven                                     |
| 46 | Infra red moisture meter                            |
| 47 | Universal moisture meter                            |
| 48 | Hammer mill                                         |
| 49 | Magnum mill                                         |
| 50 | Colloid mill                                        |
| 51 | Ball mill                                           |
| 52 | Sieve analyzer                                      |
| 53 | Vapour compression refrigeration cycle              |
| 54 | Refrigeration tutor                                 |
| 55 | Air-conditioning tutor                              |
| 56 | Model of ammonia ice plant                          |
| 57 | Model of cooling tower                              |
| 58 | Water baths                                         |
| 59 | Ammeters                                            |
| 60 | Voltmeters                                          |
| 61 | Wattmeters                                          |
| 62 | Wet and dry bulb thermometers                       |

| 63 | Hygrometers                             |
|----|-----------------------------------------|
| 64 | Anemometer with digital display         |
| 65 | Pressure measurement devices            |
| 66 | Different manometers                    |
| 67 | U tube double column Manometer          |
| 68 | Multimeters                             |
| 69 | Clamp-on meters                         |
| 70 | Portable energy meters                  |
| 71 | Pyranometer                             |
| 72 | Transducers                             |
| 73 | Flow meters                             |
| 74 | Particle size analyzer                  |
| 75 | Dielectric Properties Analyzer          |
| 76 | Microwave power leakage detector        |
| 77 | Industrial PID controller and PLC units |
| 78 | Agitation and mixing system             |
| 79 | Crystallizer                            |
| 80 | CNC lathe machine                       |
| 81 | Grinding machine                        |
| 82 | Drilling machines                       |
| 83 | Welding machines                        |
| 84 | Student drawing boards                  |
| 85 | Electronics engineering tutor set       |
| 86 | Electrical engineering tutor set        |
| 87 | Process control tutor set               |

# **Department of Food Quality Assurance**

| Sr. | Name of Equipment                             |
|-----|-----------------------------------------------|
| 1   | Different Microscopes                         |
| 2   | Autoclave                                     |
| 3   | Hot Air Ovens                                 |
| 4   | Vacuum ovens                                  |
| 5   | Colony Counter                                |
| 6   | Rotary Shaker                                 |
| 7   | Lab Centrifuge                                |
| 8   | Deep Freezers of different temperature ranges |
| 9   | Laminar Flow Unit                             |
| 10  | Water Baths                                   |
| 11  | Oil baths                                     |
| 12  | BOD incubators                                |

| 13 | Ozone washer                    |
|----|---------------------------------|
| 14 | Distillation Unit               |
| 15 | Lab Scale Fermentor             |
| 16 | Serological water bath          |
| 17 | Water distillation unit         |
| 18 | Digital weighing balances       |
| 19 | pH meter                        |
| 20 | Protein digestion unit          |
| 21 | Protein distillation unit       |
| 22 | Soxhlet unit                    |
| 23 | Desiccators                     |
| 24 | Digital moisture meter          |
| 25 | Protein estimation assembly     |
| 26 | Digital pH meter                |
| 27 | Digital Thermometers            |
| 28 | Muffle Furnace                  |
| 29 | Spectrophotometer               |
| 30 | Vortex mixture                  |
| 31 | Colorimeter                     |
| 32 | Bomb calorimeter                |
| 33 | Vacuum flash evaporator set     |
| 34 | Paper Chromatography set        |
| 35 | Thin layer Chromatography Set   |
| 36 | Paper electrophoresis unit      |
| 37 | Magnetic stirrer with hot plate |
| 38 | Roto-viscometer                 |
| 39 | Flame photometer                |
| 40 | Gas chromatography system       |
| 41 | HPLC systetem                   |
| 42 | Refrigerated centrifuge         |
| 43 | Scanning Electrons Microscope   |

#### **Department of Food Processing Plant Operation**

Pilot plants/ processing lines appropriate to the region based on the availability of raw material. The pilot plants may selected among

- a) Bakery and confectionary line
- b) Fruit and vegetable canning line
- c) Extruded snack processing line
- d) Bottling and beverages line
- e) Grain mills

The pilot plants should be complete with the required utilities such as steam boiler, DG set, cold storage, three phase electricity, water treatment and other necessary accessories.

#### **Department of Food Business Management**

- 1. A set of computer serve, working nodes, printer for 25 students
- 2. Language lab set with audio management system for 25 students
- 3. LCD projectors with screens and other accessories
- 4. LED display systems